10 research outputs found

    Motion Artifacts Correction from Single-Channel EEG and fNIRS Signals using Novel Wavelet Packet Decomposition in Combination with Canonical Correlation Analysis

    Full text link
    The electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals, highly non-stationary in nature, greatly suffers from motion artifacts while recorded using wearable sensors. This paper proposes two robust methods: i) Wavelet packet decomposition (WPD), and ii) WPD in combination with canonical correlation analysis (WPD-CCA), for motion artifact correction from single-channel EEG and fNIRS signals. The efficacy of these proposed techniques is tested using a benchmark dataset and the performance of the proposed methods is measured using two well-established performance matrices: i) Difference in the signal to noise ratio ({\Delta}SNR) and ii) Percentage reduction in motion artifacts ({\eta}). The proposed WPD-based single-stage motion artifacts correction technique produces the highest average {\Delta}SNR (29.44 dB) when db2 wavelet packet is incorporated whereas the greatest average {\eta} (53.48%) is obtained using db1 wavelet packet for all the available 23 EEG recordings. Our proposed two-stage motion artifacts correction technique i.e. the WPD-CCA method utilizing db1 wavelet packet has shown the best denoising performance producing an average {\Delta}SNR and {\eta} values of 30.76 dB and 59.51%, respectively for all the EEG recordings. On the other hand, the two-stage motion artifacts removal technique i.e. WPD-CCA has produced the best average {\Delta}SNR (16.55 dB, utilizing db1 wavelet packet) and largest average {\eta} (41.40%, using fk8 wavelet packet). The highest average {\Delta}SNR and {\eta} using single-stage artifacts removal techniques (WPD) are found as 16.11 dB and 26.40%, respectively for all the fNIRS signals using fk4 wavelet packet. In both EEG and fNIRS modalities, the percentage reduction in motion artifacts increases by 11.28% and 56.82%, respectively when two-stage WPD-CCA techniques are employed.Comment: 25 pages, 10 figures and 2 table

    Fiber Bragg Gratings based smart insole to measure plantar pressure and temperature

    No full text
    Various foot complications can be easily avoided by continuously monitoring plantar (foot sole) pressure and temperature at home. Systems which can simultaneously measure plantar pressure and temperature in real time are still scarce. In this work, the design, characterization, and implementation of a Fiber Bragg Gratings (FBG) based smart insole capable of simultaneously measuring plantar pressure and temperature has been reported. The instrumented insole was tested and verified during static and gait exercises. The paper also provides a comparison of the developed optoelectronic-based solution with a commercially available and widely used plantar pressure measurement and analysis system, and a lab-made electronic sensor-based solution for simultaneously recording plantar pressure and temperature. It was shown that even though the commercial plantar pressure acquisition system is very robust and highly precise due to many sensing units on the insole, the developed insole with a much smaller number of sensors can simultaneously acquire both plantar temperature and pressure with reasonable precision while displaying both foot pressure and temperature maps, and gait cycle plots in real-time with a development cost more than eight times lower than the manufacturing cost of the commercial solution. Our proposed optoelectronic-based solution is lightweight, uncomplicated but robust, and electronically safer than the commercial system. While the proposed system is far from its optimized form, we expect that our developed prototype will instigate other researchers in this domain to further explore optoelectronic-based solutions in real-time plantar pressure and temperature monitoring.This work was made possible by Qatar National Research Fund (QNRF) NPRP12S-0227–190164 and International Research Collaboration Co-Fund (IRCC) grant: IRCC-2021–001 and Universiti Kebangsaan Malaysia under Grant GUP-2021–019 and DPK-2021–001 . The open-access publication is supported by Qatar National Library (QNL)

    Fiber Bragg Gratings based smart insole to measure plantar pressure and temperature

    No full text
    Various foot complications can be easily avoided by continuously monitoring plantar (foot sole) pressure and temperature at home. Systems which can simultaneously measure plantar pressure and temperature in real time are still scarce. In this work, the design, characterization, and implementation of a Fiber Bragg Gratings (FBG) based smart insole capable of simultaneously measuring plantar pressure and temperature has been reported. The instrumented insole was tested and verified during static and gait exercises. The paper also provides a comparison of the developed optoelectronic-based solution with a commercially available and widely used plantar pressure measurement and analysis system, and a lab-made electronic sensor-based solution for simultaneously recording plantar pressure and temperature. It was shown that even though the commercial plantar pressure acquisition system is very robust and highly precise due to many sensing units on the insole, the developed insole with a much smaller number of sensors can simultaneously acquire both plantar temperature and pressure with reasonable precision while displaying both foot pressure and temperature maps, and gait cycle plots in real-time with a development cost more than eight times lower than the manufacturing cost of the commercial solution. Our proposed optoelectronic-based solution is lightweight, uncomplicated but robust, and electronically safer than the commercial system. While the proposed system is far from its optimized form, we expect that our developed prototype will instigate other researchers in this domain to further explore optoelectronic-based solutions in real-time plantar pressure and temperature monitoring. 2022 Elsevier B.V.This work was made possible by Qatar National Research Fund (QNRF) NPRP12S-0227-190164 and International Research Collaboration Co-Fund (IRCC) grant: IRCC-2021-001 and Universiti Kebangsaan Malaysia under Grant GUP-2021-019 and DPK-2021-001 . The statements made herein are solely the responsibility of the authors. The open-access publication is supported by Qatar National Library (QNL).Scopu

    An investigation to study the effects of Tai Chi on human gait dynamics using classical machine learning

    No full text
    Tai Chi has been proven effective in preventing falls in older adults, improving the joint function of knee osteoarthritis patients, and improving the balance of stroke survivors. However, the effect of Tai Chi on human gait dynamics is still less understood. Studies conducted in this domain only relied on statistical and clinical measurements on the time-series gait data. In recent years machine learning has proven its ability in recognizing complex patterns from time-series data. In this research work, we have evaluated the performance of several machine learning algorithms in classifying the walking gait of Tai Chi masters (people expert on Tai Chi) from the normal subjects. The study is designed in a longitudinal manner where the Tai Chi naive subjects received 6 months of Tai Chi training and the data was recorded during the initial and follow-up sessions. A total of 57 subjects participated in the experiment among which 27 were Tai Chi masters. We have introduced a gender, BMI-based scaling of the features to mitigate their effects from the gait parameters. A hybrid feature ranking technique has also been proposed for selecting the best features for classification. The research reports 88.17% accuracy and 93.10% ROC AUC values from subject-wise 5-fold cross-validation for the Tai Chi masters' vs normal subjects' walking gait classification for the "Single-task" walking scenarios. We have also got fairly good accuracy for the "Dual-task" walking scenarios (82.62% accuracy and 84.11% ROC AUC values). The results indicate that Tai Chi clearly has an effect on the walking gait dynamics. The findings and methodology of this study could provide preliminary guidance for applying machine learning-based approaches to similar gait kinematics analyses. 2022 Elsevier LtdThis work was supported in part by the Qatar National Research Fund under Grant NPRP12S-0227-190164 and in part by the International Research Collaboration Co-Fund ( IRCC ) through Qatar University under Grant IRCC-2021-001 . The statements made herein are solely the responsibility of the authors. Open access publication is supported by Qatar National Library.Scopu

    NDDNet: a deep learning model for predicting neurodegenerative diseases from gait pattern

    No full text
    Neurodegenerative diseases damage neuromuscular tissues and deteriorate motor neurons which affects the motor capacity of the patient. Particularly the walking gait is greatly influenced by the deterioration process. Early detection of anomalous gait patterns caused by neurodegenerative diseases can help the patient to prevent associated risks. Previous studies in this domain relied on either features extracted from gait parameters or the Ground Reaction Force (GRF) signal. In this work, we aim to combine both GRF signals and extracted features to provide a better analysis of walking gait patterns. For this, we designed NDDNet, a novel neural network architecture to process both of these data simultaneously to detect 3 different Neurodegenerative Diseases (NDDs). We have done several experiments on the data collected from 64 participants and got 96.75% accuracy on average in detecting 3 types of NDDs. The proposed method might provide a way to get the most out of the data in hand while working with GRF signals and help diagnose patients with an anomalous gait more effectively.This work was supported in part by the Qatar National Research Fund under Grant NPRP12S-0227-190164 and in part by the International Research Collaboration Co-Fund (IRCC) through Qatar University under Grant IRCC-2021- 001. The statements made herein are solely the responsibility of the authors. This open-access publication is supported by Qatar National Library

    Machine Learning-Based Diabetic Neuropathy and Previous Foot Ulceration Patients Detection Using Electromyography and Ground Reaction Forces during Gait

    Get PDF
    Diabetic neuropathy (DN) is one of the prevalent forms of neuropathy that involves alterations in biomechanical changes in the human gait. Diabetic foot ulceration (DFU) is one of the pervasive types of complications that arise due to DN. In the literature, for the last 50 years, researchers have been trying to observe the biomechanical changes due to DN and DFU by studying muscle electromyography (EMG) and ground reaction forces (GRF). However, the literature is contradictory. In such a scenario, we propose using Machine learning techniques to identify DN and DFU patients by using EMG and GRF data. We collected a dataset from the literature which involves three patient groups: Control (n = 6), DN (n = 6), and previous history of DFU (n = 9) and collected three lower limb muscles EMG (tibialis anterior (TA), vastus lateralis (VL), gastrocnemius lateralis (GL)), and three GRF components (GRFx, GRFy, and GRFz). Raw EMG and GRF signals were preprocessed, and different feature extraction techniques were applied to extract the best features from the signals. The extracted feature list was ranked using four different feature ranking techniques, and highly correlated features were removed. In this study, we considered different combinations of muscles and GRF components to find the best performing feature list for the identification of DN and DFU. We trained eight different conventional ML models: Discriminant analysis classifier (DAC), Ensemble classification model (ECM), Kernel classification model (KCM), k-nearest neighbor model (KNN), Linear classification model (LCM), Naive Bayes classifier (NBC), Support vector machine classifier (SVM), and Binary decision classification tree (BDC), to find the best-performing algorithm and optimized that model. We trained the optimized the ML algorithm for different combinations of muscles and GRF component features, and the performance matrix was evaluated. Our study found the KNN algorithm performed well in identifying DN and DFU, and we optimized it before training. We found the best accuracy of 96.18% for EMG analysis using the top 22 features from the chi-square feature ranking technique for features from GL and VL muscles combined. In the GRF analysis, the model showed 98.68% accuracy using the top 7 features from the Feature selection using neighborhood component analysis for the feature combinations from the GRFx-GRFz signal. In conclusion, our study has shown a potential solution for ML application in DN and DFU patient identification using EMG and GRF parameters. With careful signal preprocessing with strategic feature extraction from the biomechanical parameters, optimization of the ML model can provide a potential solution in the diagnosis and stratification of DN and DFU patients from the EMG and GRF signals

    Design and Implementation of a Smart Insole System to Measure Plantar Pressure and Temperature

    No full text
    An intelligent insole system may monitor the individual’s foot pressure and temperature in real-time from the comfort of their home, which can help capture foot problems in their earliest stages. Constant monitoring for foot complications is essential to avoid potentially devastating outcomes from common diseases such as diabetes mellitus. Inspired by those goals, the authors of this work propose a full design for a wearable insole that can detect both plantar pressure and temperature using off-the-shelf sensors. The design provides details of specific temperature and pressure sensors, circuit configuration for characterizing the sensors, and design considerations for creating a small system with suitable electronics. The procedure also details how, using a low-power communication protocol, data about the individuals’ foot pressure and temperatures may be sent wirelessly to a centralized device for storage. This research may aid in the creation of an affordable, practical, and portable foot monitoring system for patients. The solution can be used for continuous, at-home monitoring of foot problems through pressure patterns and temperature differences between the two feet. The generated maps can be used for early detection of diabetic foot complication with the help of artificial intelligence

    A Machine Learning-Based Severity Prediction Tool for the Michigan Neuropathy Screening Instrument

    Get PDF
    Diabetic sensorimotor polyneuropathy (DSPN) is a serious long-term complication of diabetes, which may lead to foot ulceration and amputation. Among the screening tools for DSPN, the Michigan neuropathy screening instrument (MNSI) is frequently deployed, but it lacks a straightforward rating of severity. A DSPN severity grading system has been built and simulated for the MNSI, utilizing longitudinal data captured over 19 years from the Epidemiology of Diabetes Interventions and Complications (EDIC) trial. Machine learning algorithms were used to establish the MNSI factors and patient outcomes to characterise the features with the best ability to detect DSPN severity. A nomogram based on multivariable logistic regression was designed, developed and validated. The extra tree model was applied to identify the top seven ranked MNSI features that identified DSPN, namely vibration perception (R), 10-gm filament, previous diabetic neuropathy, vibration perception (L), presence of callus, deformities and fissure. The nomogram’s area under the curve (AUC) was 0.9421 and 0.946 for the internal and external datasets, respectively. The probability of DSPN was predicted from the nomogram and a DSPN severity grading system for MNSI was created using the probability score. An independent dataset was used to validate the model’s performance. The patients were divided into four different severity levels, i.e., absent, mild, moderate, and severe, with cut-off values of 10.50, 12.70 and 15.00 for a DSPN probability of less than 50, 75 and 100%, respectively. We provide an easy-to-use, straightforward and reproducible approach to determine prognosis in patients with DSPN

    Machine learning-based classification of healthy and impaired gaits using 3D-GRF signals

    No full text
    Gait analysis is helpful for rehabilitation, clinical diagnoses, and sporting activities. Among the gathered signals, ground reaction forces (GRF) may be used for assisting doctors in recognizing and categorizing gait patterns using Machine-Learning methods. In this study, GaitRec and Gutenberg databases were used, where GaitRec contains 2645 gait disorder (GD) patients and 211 Healthy Controls (HCs), and the Gutenberg database has 350 HCs. The combined database has HCs and four GD classes: hip, knee, ankle, and calcaneus. GD is an abnormality in the hip, knee, or ankle joints, whereas Calcaneus gait is calcaneus fractures or ankle fusions. We pre-processed the GRF signals, applied different feature extraction techniques, removed the highly correlated features, and ranked the features using three feature selection algorithms. K-nearest neighbour model (KNN) showed the top performance in terms of accuracy in all experiments. Four different experimental schemes were pursued: (i) 6 binary classifications; (ii) 1 three-class classification; (iii) 2 four-class classifications; (iv) one five-class classification. We also compared the performance of vertical GRF with three-dimensional GRF. We found that using three-dimensional GRF increased the overall performance. Furthermore, it is found that time-domain and Wavelet features are among the most useful in identifying gait patterns. The findings show promising performance in automated gait disorder classification. 2022 Elsevier LtdThis work was made possible by Qatar National Research Fund (QNRF) NPRP12S-0227-190164 and International Research Collaboration Co-Fund (IRCC) grant: IRCC-2021-001 and Universiti Kebangsaan Malaysia under Grant GUP-2021-019 and DPK-2021-001. The statements made herein are solely the responsibility of the authors.Scopu
    corecore